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EXECUTIVE SUMMARY 

This study used a machine learning approach to model the water qualities of 

Lake Erie, Ontario, Canada. The data used in the modelling was obtained from 

the Environment and Climate Change Canada Agency for Lake Erie between 

2000 and 2018 and included chlorophyll-a (CHLA), the dissolved oxygen (DO), 

total phosphorus (TP), total nitrogen (TN), temperature (T), pH, and depth. 

Several neural network (NN) models were selected for the data analysis, 

including the standard Neural Network (NN) model, the Simple Recurrent 

Neural Network (SRN) model, the Back Propagation Neural Network (BPNN) 

model and the Jump Connection Neural Network (JCNN) model. CHLA was 

selected as the key water quality indicators for eutrophication in Lake Erie. The 

above artificial neural network models were assembled. This study showed 

that the ANN ensemble model predicted the water quality of Lake Erie in a 

more timely and accurate manner, which aids in facilitating conventional water 

quality monitoring and reducing the risk of eutrophication in Lake Erie. 
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1 Introduction 
 
 
1.1 Background 

 
Eutrophication of lakes is one of the main factors that affect lake water quality 

(Canada. Environment and Climate Change Canada, & Canadian Government 

EBook Collection, 2018). It reduces the transparency of the water, making it 

difficult for sunlight to penetrate the water layer, negatively affects the 

photosynthesis of plants in the water and potentially cause an oversaturation 

of dissolved oxygen. Oversaturation of dissolved oxygen and low dissolved 

oxygen in water can be harmful to aquatic organisms and cause a large 

number of fish deaths. At the same time, because of the eutrophication of the 

water body, large numbers of blue algae and green algae may grow on the 

surface of the water body and form a layer of green scum over the water body. 

This will cause the organic matter that accumulates at the bottom to 

decompose under anaerobic conditions and produce harmful gases and 

plankton to produce biological toxins (Sayers, M. J. et al., 2019). Also, 

because the water is eutrophic lakes contains nitrates and nitrites, human 

beings and animals living in the surrounding areas can be poisoned if they 

drink the polluted water. In addition, after the green scum is formed, the 

deepwater algae will utilize the oxygen in the water, because they are not 

exposed to the sun, and cannot perform photosynthesis. The oxygen in the 

water will gradually decrease and the organisms in the water will die due to 

insufficient oxygen. The dead algae and organisms will oxidize in the water. At 

this time, the water body will become odorous and the water resource will be 

further contaminated. The blue algae outbreak will also have a negative 

impact on residents and tourists enjoying boating, swimming, and visiting the 

landscape around the lake (Basile, S. J. et al., 2017). 
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Algae contain chlorophyll a (CHLA), which produces nutrients that sustain life 

through photosynthesis. Therefore, in research, people often use the 

chlorophyll content in water to reflect the number of algae (Meyer, K. A. et al., 

2017). It is necessary to apply more accurate methods to monitor the water 

quality of Lake Erie because monitoring the chlorophyll content in the lake 

water to prevent the algae blooms is the key to protecting the water quality of 

Lake Erie (Fraser & desLibris, 2008). 

 

With the increasingly prominent ecological and environmental problems in 

lakes, the need for monitoring lake water quality is stricter than before (Millie, D. 

F. et al., 2014). Traditional water quality sampling is done manually, which is 

time-consuming and laborious, and it is difficult to consider water quality issues 

at different depths. When current researchers analyze the water quality of 

Lake Erie, they cannot quickly analyze the entire lake area. Also, because of 

the limited number of sampling points and low sampling frequency, continuous 

monitoring is not possible. Artificial Neural Network (ANN) as a popular 

machine learning algorithm has a high potential in predicting complex 

relationships, so it has been increasingly used in environmental modelling 

(Piasecki, A. et al., 2015). After many experiments, it has been shown that the 

fitting of the ANN model is significantly better than other models, such as 

regression models and mechanical models. However, during the running of the 

ANN model, the data will be divided randomly, which makes the ANN model 

highly likely to have different performance outputs during repeated simulations 

(Saber, A. et al., 2020). For example, after a researcher obtains an ideal 

simulation result when modelling, it is difficult for others to replicate the 

simulation results. 

 

In order to enable people to obtain similar simulation results when using the 

ANN model to repeat the simulation and to make it stable and repeatable, the 

artificial neural network-integrated model needs to be applied to the process of 
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water quality monitoring (Li, Y. L. et al., 2015). Applying integrated simulation 

to the ANN model can improve its model fitting results in environmental 

modelling. Firstly, by using multiple ANN models to train the data and 

combining these ANN models into an ANN integrated model, people can 

obtain a more stable and accurate model fitting result than a single ANN 

model. The integrated simulation of an artificial neural network model is highly 

valued because of its utility (Lu, F. et al., 2016). 

 
 
 
1.2 Aims and objective 

 
This study assesses machine learning methods to model the water quality of 

Lake Erie, Ontario, Canada. Four artificial neural network (ANN) models were 

selected for the research, including the standard Neural Network (NN) model, 

the Simple Recurrent Neural Network (SRN) model, the Back Propagation 

Neural Network (BPNN) model and the Jump Connection Neural Network 

(JCNN) model. The research used integrated technology to support the 

implementation of integrated simulation. This method was compared to 

traditional water quality detection methods and a single NN model, and the 

ANN model that was most suitable for predicting the chlorophyll-a content of 

Lake Erie was identified. The artificial neural network (ANN) integrated model 

quickly and accurately predicts the water quality of Lake Erie (Altunkaynak & 

Altunkaynak, 2007). For example, when there were enough input variables 

and chlorophyll-a is used as the output variable, the artificial neural network 

model will automatically generate codes and formulas that can be used to 

predict chlorophyll-a after training. People can use this code and enough input 

variables to predict the chlorophyll-a content in the water. It has a positive 

effect on promoting traditional water quality monitoring and reducing the risk of 

eutrophication in Lake Erie. This research proposes a new method to retrieve 

the optical activity parameters and non-optical activity parameters of water 
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bodies and provide new strategies for water quality monitoring. The results of 

the study provide local government departments and companies with new 

methods to monitor water quality, which will have a positive application in 

preventing lake water pollution. It helps provide education for local residents 

and tourists. 

 
 
 
1.3 Study area 

 
Lake Erie (Figure 1.1, 1.2 & 1.3) is one of the five largest lakes in North 

America and the thirteenth largest lake in the world (May, C. J. et al., 2020). 

Lake Erie has an area of 25,700 square kilometres, an average depth of 19 

meters, and a water storage capacity of 483 cubic kilometres (Mekonnen & 

Gorsevski, 2015). Lake Erie straddles the United States and Canada and is 

oriented from southwest to northeast direction. The southern shore of the lake 

is in Ohio, Pennsylvania, and New York; the west shore is Michigan; and the 

north shore is Ontario, Canada. The Detroit River connects Lake Huron with 

Lake Erie. The Niagara River passes through Niagara Falls to connect the 

lake into Ontario. The total length of the lakeshore is 1,200 kilometres. There 

are islands in the lake, concentrated at the western, with Pelee Island in 

Canada as the largest (Skwor, T. et al., 2014). The lakeshore has industry 

development and lake water pollution is serious, which has caused many 

lakeside tourist areas to close. 
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Figure 1.1 Satellite photo of the Great Lakes (source: NASA) 
 
 

Figure 1.2 map of Lake Eire (U.S. Congress, 1898) 
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Figure 1.3 map of algae bloom in Lake Erie (U.S. Congress, 1898) 

 
 
Since the 1950s, the nutrient load of Lake Erie has increased, and the degree 

of eutrophication has increased year by year (Tian, D. et al., 2017). In the mid 

to late 1960s, blue algae blooms appeared seasonally in the western bay of 

Lake Erie, mainly composed of Anabaena, Aphanizomenon, and Microcystis. 

Cladophora also appeared in large numbers at this time. In the 1970s, water 

blooms appeared every year, mainly Aphanizomenon flos-aquae. There was 

no large-scale water bloom in the early 1980s, but the water blooms in the 

middle and late stages were mainly fascicularia (Zhou, Y. et al., 2013). At this 

time, the exotic species zebra mussels and quagga mussels began to filter 

algae. In 1995 and 1998, large-scale water blooms dominated by Microcystis 

appeared in Lake Erie. Especially in September 1995, green paint-like blooms 

covered the entire western lake area of Lake Erie. Since 2000, microcystis 

blooms have frequently appeared. In August 2003, the microcystis bloom 

lasted for a month in the western lake area of the lake, the worst ever (Mou, X. 

et al., 2013). From July to August 2014, large-scale microcystis blooms 

reappeared. The concentration of microcystins in the tap water of Toledo, Ohio 

exceeded drinking water standards, causing a drinking water crisis for more 

than  400,000  people.   Ohio  Governor  John  Kasich  declared  a  state of

Algae bloom 
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emergency in some areas (Wynne & Stumpf, 2015). 
 
 
The climatic conditions of Lake Erie are conducive to algae reproduction. In 

July 2019, the wind near Lake Erie was very weak and the airflow was slow. 

The algae in Lake Erie multiply on the surface of the lake and are not 

dispersed by the wind. In August, the strong wind mixed the surface algae to a 

relatively deeper depth and increased growth. As the algae multiplied, the 

nutrients in the water were consumed. At this time, the precipitation runoff in 

August brings nutrients from the farmland runoff around Lake Erie to the lake. 

This accelerates the blue algae bloom. In ten days, the area covered by blue 

algae can more than double. If these algae were accidentally eaten by humans, 

liver damage, numbness, dizziness and vomiting would occur. For this reason, 

many outdoor activities around Lake Erie were temporarily closed. The 

government also advised people to stay away from waters affected by the 

dense blue algae (Tian, D. et al., 2017). 

 

Therefore, it is necessary to improve the water quality monitoring methods to 

detect and predict blue algae blooms in Lake Erie. 

 
 
 
1.4 Water quality data 

 
The data used in the modelling was obtained from the Environment and 

Climate Change Canada Agency for Lake Erie between 2000 and 2018, 

including chlorophyll-a (CHLA), dissolved oxygen (DO), total phosphorus (TP), 

total nitrogen (TN), temperature (T), pH, and depth. 
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2 Methods 
 
 
This study used ArcGIS to draw a map of the distribution of water quality 

monitoring points in Lake Erie (Figure 2.1). Next, nearly 200,000 data points 

were obtained from the Environment and Climate Change Canada Agency. 

Excel was used to filter out the points with the same monitoring time, longitude, 

latitude and depth among 200,000 data. In the end, a total of 252 monitoring 

points were selected. The time, longitude, latitude, chlorophyll-a, dissolved 

oxygen, total phosphorus, total nitrogen, pH and depth data were summarized 

in a table. 

 
 

Figure 2.1 the distribution of water quality monitoring points in Lake Erie 
 
 
Subsequently, the time, longitude, and latitude were calculated as shown in 

Table 2.1 (Krasnopolsky, 2018), and all the filtered data were normalized. 

Normalization is a way to simplify calculations. It transforms the dimensional 

expression into a dimensionless expression and becomes a scalar. In this way, 

indicators of different units or magnitudes can be compared. To facilitate the 

calculation, the data is normalized, that is, the data becomes a
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decimal between 0 and 1. 
 
 

Table 2.1 

Variable Unit Input 
 

 
Day 

 
 

Hour 

sin( 2πday/366 ) 

cos( 2πday/366 ) 

sin( hour*2*π/24 ) 

cos( hour*2*π/24 ) 

Latitude sin( lat ) 

sin( lon ) 
Longitude 

cos( lon ) 
 

Dissolved oxygen(DO) mg/L ( DO-min ) / ( max-min ) 

Total phosphorus(TP) mg/L ( TP-min ) / ( max-min ) 

total nitrogen(TN) mg/L ( TN-min ) / ( max-min ) 

ph ( pH-min ) / ( max-min ) 

(Depth-min ) / 
Depth m 

( max-min ) 
 

Temperature(T) Degree ℃ ( T-min ) / ( max-min ) 
 
 

Variable Unit Output 
 

 
Chlorophyll-a (CHLA) μg/L 

(CHLA-min ) / 

(max-min ) 

 
 

Then, the processed data, except chlorophyll-a, were used as the input index, 

and chlorophyll-a was used as the output index (Figure 2.2). The data were 

trained with four neural network models. Each training would reduce an index 

with the least impact until only one index remains. 
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Figure 2.2 Artificial Neural Network 
 
 
Finally, the data integrated and analyzed the most relevant input parameters 

and appropriate ANN model with chlorophyll a content (output parameters) 

based on the results, and draw the final conclusion. 

 
 
 
2.1 Neural Network model 

 

2.1.1 Introduction of the neural network model 
 

Artificial neural networks are one of the main tools used in machine learning. 

Neural networks consist of input and output layers, as well as a hidden layer 

consisting of units that transform the input into something that the output layer 

can use (China University of Geosciences, 2019). They are excellent tools for 

finding patterns. 

 

Learning is an important content of neural network research, and its 

adaptability is achieved through learning.  The  process  of  artificial  neural 
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network “learning” was called training (Luo, W. et al., 2019). The artificial 

neural network has a self-learning function. For example, when implementing 

image recognition, only input with different image templates and corresponding 

recognition results into the artificial neural network, and the network will slowly 

learn to recognize similar images through the self-learning function (Huang & 

Gao, 2017). The self-learning function is particularly important for prediction. In 

this project, taking time, longitude, latitude, dissolved oxygen, total phosphorus, 

total nitrogen, pH, depth and temperature as input variables, and chlorophyll-a 

as output variables, the artificial neural network can identify them through 

"learning" the relationship between. After the "learning" is successful, the 

artificial neural network can derive the code and formula for predicting the 

output variable (chlorophyll a). When there are enough input variables, this 

method can predict relatively precisely. 

 

For a basic idea of how a deep learning neural network “learns”, imagine a 

factory line. Once the raw materials are input, they are passed down a 

conveyer belt, with each subsequent stop or layer extracts a different set of 

high-level features (Fantin‐Cruz, 2010). If the network is intended to recognize 

an object, the first layer might analyze the brightness of its pixels. The next 

layer could then identify any edges in the image, based on lines of similar 

pixels. After this, another layer may recognize textures and shapes, and so on. 

By the time the fourth or fifth layer is reached, the deep learning net will have 

created complex feature detectors. It can determine if these certain image 

elements are commonly found together, such as a pair of eyes, a nose, and a 

mouth. Once this is done, the researchers, who have trained the network, can 

give labels to the output, and then use backpropagation to correct any 

mistakes which have been made. Along with increasing the number of 

iteration times, the network can carry out its own classification tasks without 

needing humans to help every time. 
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2.1.2 Necessary parameters 
 
 
R Squared - The coefficient of multiple determination is a statistical indicator 

usually applied to multiple regression analysis. It compares the accuracy of the 

model to the accuracy of the benchmark model, wherein the prediction is the 

mean of all of the samples. A perfect fit would result in an R squared value of 1, 

a very good fit near 1, and a very poor fit less than 0. 

 
 
 
 

Where                   
 
 
[equations didn’t convert over from PDF] 
 
 
   is the actual value 

 

     is the predict value of    
 

And      is the mean of the     values 
 

Correlation Coefficient r - (Pearson’s Linear Correlation Coefficient) This is a 

statistical measure of the strength of the relationship between the actual vs 

predicted outputs. The r coefficient can range from -1 to +1. The closer r is to 1, 

the stronger the positive linear relationship, and the closer r is to -1, the 

stronger the negative linear relationship. When r is near 0, there is no linear 

relationship. 

 
r squared - This is the square of the correlation coefficient 

 
 

            
           

 
 
where                
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Where n is the number of patterns, x refers to the set of actual outputs, y refers 

to the set of predicted outputs 

 
 
 
 

2.2 Input data 
 

Dissolved oxygen (DO), total phosphorus (TP), total nitrogen (TN), 

temperature (T) and pH 

 
 
 
  

Unit 
 

Max 
 

Min 
 

Mean 
Media 

n 

Standard 

Deviation 

Coefficient of 

Variation 

TP mg/L 0.132 0.005 0.018 0.013 0.016 0.890 

Ph  8.740 7.400 8.083 8.080 0.213 0.026 

TN mg/L 0.305 0.006 0.049 0.041 0.033 0.669 

DO mg/L 15.830 9.970 12.992 13.225 1.113 0.086 

T ℃ 15.300 0.300 6.106 5.900 3.176 0.520 

DEPTH m 20.000 2.000 13.803 14.750 5.994 0.434 

 
 
 

2.3 Output data 
 

Chlorophyll-a (CHLA) 
 
 

  Unit Max Min Mean Median Standard Deviation Coefficient of Variation 

CHLA μg/L 10.900 0.100 2.236 1.500 2.069 0.925 



17  
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3 THE BODY (Results & Discussion) 
 
 
In evaluating the simulation effects of the different models, 20% of the data 

were used as a test set and R Squared and Correlation Coefficient r were used 

as the evaluation metrics. Several neural network (NN) models were selected 

for the data analysis, including the standard Neural Network (NN) model, the 

Simple Recurrent Neural Network (SRN) model, the Back Propagation Neural 

Network (BPNN) model and the Jump Connection Neural Network (JCNN) 

model. 

 
 

3.1 Standard NN 
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Figure 3.1 Scatter plots of the modelled and observed CHLA values with 

the Standard NN for Lake Erie 
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(note: R in the figures represents r in the formula) 
 
 

Table 3.1 Results of Standard NN 
 

Standard NN 

Input Variables R squared: Correlation coefficient r: 

TP,TN,PH,DO,T 0.825 0.9144 

TP,TN,PH,DO 0.7822 0.8934 

TP,TN,DO 0.7663 0.8815 

TN,DO 0.7369 0.8643 

TN 0.7015 0.8394 

 
 

The first Figure (3.1) and Table (3.1) are the results of the Standard NN 

model. When the artificial neural network is used for learning for the first time, 

the initial R-squared is 0.825. Then, the various water quality parameters are 

sequentially deleted and the same "learning" is continued with the Standard 

NN. The results show that the temperature has the smallest effect on R 

squared. Therefore, it is concluded that among the five water quality 

parameters, the temperature has the smallest correlation with chlorophyll. 

Next, the above method was continued, and pH, total phosphorus and 

dissolved oxygen were deleted in order of relevance. Finally, it is concluded 

that total nitrogen is the water quality parameter most relevant to chlorophyll. 
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3.2 SRN 
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Figure 3.2 Scatter plots of the modelled and observed CHLA values with 

the SRN for Lake Erie 
(note: R in the figures represents r in the formula) 

 
Table 3.2 Results of SRN 

 SRN 
 

Input Variables R squared: Correlation coefficient r: 

TP,TN,PH,DO,T 0.6955 0.8341 

TP,TN,PH,T 0.6928 0.8324 

TP,TN,PH 0.6693 0.8184 

TN,PH 0.5807 0.7687 

TN 0.4541 0.6879 



25  

The second is the result of the SRN model, as shown in Figure 3.2 and  Table 

3.2. When the artificial neural network is used for learning for the first time, the 

initial R-squared is 0.6955. Then, the various water quality parameters are 

sequentially deleted and the same "learning" is continued with the SRN. The 

results show that dissolved oxygen (DO) has the smallest effect on R squared. 

Therefore, it is concluded that among the five water quality parameters, 

dissolved oxygen (DO) has the smallest correlation with chlorophyll. Next, the 

above method was continued, and temperature, total phosphorus and pH were 

deleted in order of relevance. Finally, it is concluded that total nitrogen is the 

water quality parameter most relevant to chlorophyll. 

 
 
3.3 BPNN 
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Figure 3.3 Scatter plots of the modelled and observed CHLA values with 

the BPNN for Lake Erie 
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(note: R in the figures represents r in the formula) 
 
 

Table 3.3 Results of BPNN 
 

 BPNN  

Input Variables R squared: Correlation coefficient r: 

TP,TN,PH,DO,T 0.7255 0.867 

TP,TN,DO,T 0.7307 0.877 

TP,TN,T 0.7397 0.8721 

TN,T 0.7181 0.8655 

TN 0.6066 0.809 

 
 

The third is the result of the BPNN model, as shown in Figure 3.3 and Table 

3.3. When the artificial neural network is used for learning for the first time, the 

initial R-squared is 0.7255. Then, the various water quality parameters are 

sequentially deleted and the same "learning" is continued with the BPNN. The 

results show that pH has the smallest effect on R squared. Therefore, it is 

concluded that among the five water quality parameters, pH has the smallest 

correlation with chlorophyll. Next, the above method was continued, and 

dissolved oxygen, total phosphorus and temperature were deleted in order of 

relevance. Finally, it is concluded that total nitrogen is the water quality 

parameter most relevant to chlorophyll. 
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3.4 JCNN 
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Figure 3.4 Scatter plots of the modelled and observed CHLA values with 

the JCNN for Lake Erie 
(note: R in the figures represents r in the formula) 

 
 

Table 3.4 Results of JCNN 
 JCNN 

 

Input Variables R squared: Correlation coefficient r: 

TP,TN,PH,DO,T 0.7303 0.8597 

TP,TN,DO,T 0.7601 0.8875 

TP,TN,DO 0.7184 0.8616 

TN,DO 0.7321 0.861 

TN 0.6562 0.8385 
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Finally, the result of the JCNN model is shown in Figure 3.4 and Table 3.4. 

When the artificial neural network is used for learning for the first time, the 

initial R-squared is 0.7303. Then, the various water quality parameters are 

sequentially deleted and the same "learning" is continued with the JCNN. The 

results show that pH has the smallest effect on R squared. Therefore, it is 

concluded that among the five water quality parameters, pH has the smallest 

correlation with chlorophyll. Next, the above method was continued, and 

temperature, total phosphorus and dissolved oxygen were deleted in order of 

relevance. Finally, it is concluded that total nitrogen is the water quality 

parameter most relevant to chlorophyll. 
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4 Conclusions 
 
 
According to the “learning” results of the four models, the first conclusion is 

found that total nitrogen is the most related to chlorophyll, as well as total 

phosphorus and dissolved oxygen. 

 

Then, by comparing the results of the four artificial neural network models, it 

was found that the R-squared of the Standard NN model is closest to 1. 

Therefore, the fitting result of Standard NN is the best, and it is the most 

suitable for the chlorophyll in Lake Erie. 

 

In addition to the above two conclusions, the results obtained by each ANN 

model are different, so it is necessary to consider the results of multiple 

artificial neural network (ANN) models. The result after comprehensive 

consideration will be more accurate than the result of considering only a single 

artificial neural network (ANN) model. 

 

Finally, because the water depth of each monitoring point is different, it is 

necessary to use the water depth as an important parameter. This can 

increase the accuracy of the results. Previous studies have not considered the 

impact of water depth, so considering the water depth is one of the innovations 

of the project. 
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5 Limitations and Recommendations 
 
 
5.1 Limitations 

 
There is not enough input data so only the water quality parameters most 
relevant to chlorophyll can be found, and the code to predict chlorophyll cannot 
be generated. 

 
 
In this project, only four main artificial neural network (ANN) models are 

selected. In order to make the results more accurate, more artificial neural 

network (ANN) models need to be applied. 

 

The project lacks model calibration and verification. 
 
 
 

5.2 Recommendations 
 
In order to obtain more accurate results and achieve the goal of prediction, 

more input parameters should be used to predict chlorophyll-a (CHLA). Also, 

more artificial neural network (ANN) models should be applied in prediction to 

make results more accurate.
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