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Executive Summary 

Soil is important to human and environmental health and ecological functioning. There is a 

demand for high-resolution quantitative soil data in many applications including agriculture, 

forestry, mining, land reclamation, and environmental science. Soil scientists are trying to meet 

this demand using new mapping methods.  

Soil scientists combine soil observations with models of soil-landscape relationships to interpret 

how soil varies over space. Soil mapping is how this information is compilated and shared with 

wider users. Conventional mapping depends on mental models and produces sharply bounded 

map units with qualitative estimates of accuracy and uncertainty. The process of conventional 

mapping is time-consuming and resource-intensive, and the end results are not updatable or 

completely reproducible. 

Recent technological advancement (GIS, remote sensing, computer processing) has enabled soil 

mapping to become more quantitative. Predictive digital mapping harnesses statistical 

techniques to generate soil maps with gridded continuous data and quantitative uncertainty 

estimates. These maps can be updated dynamically as new data becomes available. The inputs 

for predictive mapping are soil values used to calibrate and validate models and environmental 

covariates. Maps are commonly produced using existing or legacy data, often due to budget 

constraints, but the collection of new data using statistical sampling designs and an independent 

dataset for model validation have the potential to generate the greatest accuracy.  

Predictive digital soil mapping has progressed from academic to operational over the last decade. 

Soil survey agencies in many countries now incorporate these techniques with good results. 

Some soil properties and classifications can be predicted with suitable levels of accuracy, but 

others are more difficult to estimate, providing opportunities for future developments. With this 

progress, the development of minimum quality standards has improved, but a universal system 

is yet to be enforced. Communication with end-users is critical to the success of PDSM, to ensure 

that mapping products are valuable and being applied judiciously. 
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List of Definitions and Acronyms 

DEM Digital elevation model 

Covariates Observed continuous variables that vary with the unknown target variable 

GIS Geographic information systems 

LiDAR 
Light Detection and Ranging. Remote sensing technique that uses laser pulses to 
measure the distance to Earth's surface. Common data source of DEMs. 

Map scale 

The relationship (or ratio) between distance on a map and distance on the 
ground. So-called small-scale maps (e.g. 1:500,000 - meaning one unit on the 
map equals 500,000 units on the ground) represent large areas but have less 
detail, while large-scale maps (e.g. 1:10,000) have a larger ratio and therefore 
represent smaller areas in greater detail. 

PDSM 

Predictive digital soil mapping. Also referred to as digital soil mapping (DSM) and 
predictive soil mapping (PSM) in the literature. Predictive digital soil mapping will 
be used in this work, as it is the most descriptive name, and the nomenclature 
used by the Canadian Society of Soil Science (CSSS). 

Pedology Science of soil formation, including the description and classification of soils. 

Pedometrics 

The application of mathematical and statistical methods in studying the 
distribution and genesis of soils. Includes modelling of space-time soil variation 
and soil-landscape processes, linking proximal or remote sensing data to soil 
properties, analyzing uncertainty propagation within soil models, and sampling 
design optimization. http://pedometrics.org/ 

Raster 
A raster consists of cells, or pixels, organized into a grid where each cell contains 
data values. Raster data are one of the main formats used in GIS, examples 
included aerial photographs and satellite imagery. (Esri) 

Remote Sensing 

Collection of landscape information using non-direct or distanced methods such 
as satellites and aerial surveys. Remote sensing is an efficient technique for 
collecting large amounts of data with more complete coverage than on-the-
ground methods. 

Soil attribute 
Individual characteristic or property of a soil, such as colour, pH, abundance of 
certain element, texture (sand, silt, clay content), etc. 

Soil classification 
 Organization of soils into categories based on their characteristics. Includes soil 
order, suborder, great group, subgroup, family, and series. (Brady & Weil, 2008) 

Soil profile 
Vertical cross-section through the soil, extending from surface to parent material 
at depth. Displays soil horizons. (Brady & Weil, 2008) 

Spatial autocorrelation 
 Principle that locations nearer to each other will be more related (positively or 
negatively) than points farther away. 

Vector 

In GIS, a coordinate-based data model that represents geographic features as 
points, lines, and polygons. Attributes are connected to each feature. (Esri) 
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1. Introduction 

Soils, being at the nexus of landscape, climate, and biogeochemical cycling, are essential to 

understanding environment and ecosystem health. In addition to providing ecosystem services 

such as crop production, temperature regulation, water filtration, and carbon storage (Bouma, 

2014; Nolan et al., 2021), soils also hold intrinsic and cultural value (Minami, 2009). If we can 

characterize how soil varies across landscapes and through time, we are more capable of making 

land-management decisions that support and enhance soil functioning rather than degrading the 

soil and damaging ecosystems (Doran, 2002; Gregorich et al., 1997; Lal, 2007).  

The compilation and interpretation of soil information is communicated through soil mapping. 

Conventional (or traditional) soil mappers generally rely on field data combined with their expert 

knowledge of unformalized rules or assumptions about soil-forming factors to delineate sharp 

boundaries between soil units (Hudson, 1992). Predictive digital soil mapping (PDSM) is a 

mapping technique enabled by advances in computing and data science that uses numerical or 

statistical models to combine information about soil-forming factors obtained from spatial data 

layers (environmental covariates) with point soil data in order to estimate soil features for a map 

area (MacMillan & Hengl, 2019; McBratney et al., 2003a; Scull et al., 2003). PDSM outputs are 

generally gridded data that treat soil as a continuum rather than the sharp map units of 

traditional mapping. This grid representation has the potential to be a more accurate depiction 

of soil variability over space. Gridded quantitative soil data is also more desirable in 

interdisciplinary applications such as environmental modelling (Grunwald, 2006a). However, the 

quality of the data inputs and assumptions made during the modeling strongly influence the 

accuracy of the results. 

Predictive mapping offers further advantages over traditional soil mapping. By explicitly 

describing the variables and models used, the mapping process becomes transparent and 

repeatable, and errors or assumptions are more easily interrogated. Additionally, due to the 

quantitative nature of these techniques, corresponding maps of the uncertainty of predictions 

can be generated (Macmillan, 2012). Areas of the map with poor model fit can be prioritized for 

sample collection over well-characterized zones. These features allow soil formation models to 
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be extended over large regions with greater confidence, without necessarily needing the same 

time or resources as a traditional survey would to complete a map (Drozdowski et al., 2019; 

McSweeney et al., 1994; Minasny & McBratney, 2016). The iterative, updatable nature of PDSM 

systems allows for maps to be dynamic, creating new possibilities for monitoring soil properties 

over time. 

Work in PDSM has been gradually moving from the academic research phase into application 

(McBratney et al., 2003a; Minasny & McBratney, 2016). The development of PDSM methods and 

specific systems are guided, in principle, by end-user requirements (Drozdowski et al., 2019; 

Florinsky, 2016). However, most reviews and descriptions of PDSM are oriented towards 

technical experts completing research in this field. Potential applications of PDSM projects can 

get lost in complicated details about how the mapping was done and not why, and reporting of 

accuracy and uncertainty can be difficult to understand (Arrouays, McBratney, et al., 2020). For 

these techniques to be embraced by end-users and decision-makers, such as government 

agencies, environmental consultants, agrologists, foresters, or mining industry members, the 

current status and future potential of PDSM must be communicated clearly and directly. 

The objectives of this paper are to first explain what PDSM is, why it is important, and describe 

the fundamental processes and techniques used in this mapping in a way that is comprehensible 

to non-experts; and secondly, determine whether predictive mapping results are at a stage 

where they are compatible with the needs of government, industry, and other end-users of soil 

data. 

2. Methodology 

Research for this paper was conducted from April-July 2021. A literature review was completed 

with a focus on established predictive mapping projects, often with some degree of government 

involvement, rather than smaller-scale research using cutting-edge techniques. This distinction 

was made due to the objective of examining the current application of PDSM techniques outside 

of purely research contexts. Scientific papers and government reports were the main sources of 

information. 
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Consultation with subject experts was essential in the development of this project. Semi-

structured interviews with predictive mapping practitioners were integral to gaining a better 

understanding of the mapping process and discussion of issues facing predictive mapping. The 

"Progress in predictive digital mapping and proximal soil sensing" session of the Canadian Society 

of Soil Science (CSSS) 2021 conference was another valuable source of information. 

3. Context 

3.1. Soil Formation Principles 

Soil is a mixture of organic and inorganic particles, gases, and liquid distinguished from other 

unconsolidated materials on Earth's surface by its ability to support life. The complex physical, 

chemical, and biological features and processes in soil change not only laterally across 

landscapes, but also with depth, creating distinctive layers called soil horizons. 

 

Figure 1. Sketch of a soil unit with a representative soil profile. Depth markers are on the left of the profile, and horizon labels 
(A1, A2, B, C) are on the right (Simonson, 1959). 

Soil scientists conceptualize the development of soils and their properties as a function of 

multiple environmental factors. The selection of these factors is the result of field observation 

and soil research. Therefore, if functions connecting soil to those factors can be defined and 

quantified, it should be possible to predict soil properties for a set of environmental conditions. 

This hypothesis was first published by Vasily Dokuchaev in 1886 (Florinsky, 2012) and popularized 

by Hans Jenny through his seminal book on the subject (Jenny, 1941).  

This original function is as follows: 

𝑆 = 𝑓(𝑐𝑙, 𝑜, 𝑟, 𝑝, 𝑡, … )     (1) 
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Where 𝑆 is soil, and 𝑐𝑙, 𝑜, 𝑟, 𝑝, 𝑡 are the soil-forming factors of climate, organisms, relief 

(topography), parent material, and time, respectively. Each of these factors encompasses many 

potential variables. For example, topography includes elevation, slope, aspect (e.g., north-

facing), curvature, and many other features that impact soil development. The ellipsis in the 

equation indicates the possibility of adding other factors as our understanding of soil progresses.  

Other influential pedologic models use a different approach than Dokuchaev and Jenny (Brevik 

et al., 2016). Roy Simonson's "Theory of Soil Genesis" changed the focus from external factors to 

processes occurring within a soil unit that impact the development of soil horizons, such as 

additions, removals, translocations, or transformations (Simonson, 1959). Geomorphology 

considers models of erosion and deposition in open or closed basins and the influence of slope 

curvature on water dynamics and resulting soil properties (Ruhe, 1975). Both these models are 

useful in soil classification and mapping as they promote the understanding of soil-landscape 

relationships. 

More recent advances in statistical soil models led to the development of the scorpan-SSPFe (soil 

spatial prediction function with spatially autocorrelated errors) method (McBratney et al., 

2003a): 

𝑆 = 𝑓(𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛) +  𝜀      (2) 

Where S = soil class or individual soil attribute at a point, can be predicted by: 

s: soil, other properties of the soil at that point; 

c: climate; 

o: organisms, vegetation or fauna or human activity; 

r: topography, landscape attributes; 

p: parent material, lithology; 

a: age, the time factor; 

n: space, spatial position. 

With an estimate of error or uncertainty, ε. 
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The scorpan model builds on the soil formation-factor model first introduced by adding soil and 

space as variables. The inclusion of information about the soil and spatial position changes the 

model to account for spatial autocorrelation, or the concept that points closer to each other will 

be more related to each other than points that are far away (Webster & Oliver, 2007). The 

development of the scorpan model is the result of efforts to create a generic model and 

framework to use in predictive soil mapping (McBratney et al., 2003a). This approach to 

modelling has largely been accepted and forms the foundation of most modern PDSM. 

3.2. Conventional Soil Mapping 

To represent soils on a conventional map, the extreme and continuous variation of soil must be 

simplified. Soil mappers apply the principles of soil formation-factors (clorpt) in a qualitative way, 

using their own mental models to draw boundaries between soil sample sites with different 

properties (Hudson, 1992). Soil point data is correlated with geological maps, topography, 

vegetation, and air-photo interpretation to delineate soil units based on the mapper's 

understanding of these features' control over soil formation. The logic used to decide which 

landscape features most control soil distribution, and any formalized rules applied during 

mapping, may not be available or well documented.  

Sample design in a conventional soil survey is also commonly driven by the mapper's mental 

model of soil-landscape relationships. Survey sites are selected to gain the best coverage of 

certain features and variability in the landscape. This is a way to optimize the resources of a given 

survey but introduces bias to the data collection, and the sample distribution may not be suitable 

for statistical analysis (Carré et al., 2007). 

Modern conventional soil mapping is also digital and completed using GIS programs, the end 

products of which are multi-layer vector maps with polygons representing different soil units and 

associated attribute tables listing soil classifications and attributes for each shape. The layers of 

landscape information guiding mappers come from up-to-date remote sensing methods such as 

LiDAR and spectral imaging.  However, in principle and use, these maps are still more like the 

hand-drafted soil maps of the past when compared to predictive digital mapping outputs.  
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Figure 2. Image from a conventional mapping guide showing landscape transects with representation of how a simple soil unit 
would be represented as a polygon on a map (oval shapes). The predominant soil type must make up 75% or more of the unit, and 
minor components are aggregated. Modified from (Mapping System Working Group, 1981). 

Conventional soil mapping is a well-established discipline that has served to improve our 

understanding of soil systems for many decades (Brevik et al., 2016). However, these traditional 

techniques have some inherent limitations. The necessity for sharp boundaries and 

generalization of detail required in mapping for a particular scale results in a simplified 

representation of the continuous variation of soil properties, and one or more soil types may be 

present in a mapped polygon (Grunwald, 2006b; Liu et al., 2016). It is difficult to extract 

quantitative data from conventional soil maps, where single values are assigned to entire sharply-

bounded map units (Grunwald, 2006a). Measuring and reporting uncertainty or error is difficult 

to accomplish in conventional maps. Protocols have been established to record the amount of 

aggregation in a map and provide general estimates of uncertainty, but this cannot be quantified 

(Brevik et al., 2016). Conventional maps cannot be updated dynamically when new data becomes 

available. The area of interest would need to be re-mapped, requiring significant time and 

person-hours (Bouma, 1989). Soil properties such as soil organic carbon (SOC) change in a matter 

of years to decades (Mermut & Eswaran, 2001; Prescott, 2010) and are crucial to understanding 

global systems of carbon balance and biogeochemical cycling. It is not feasible to re-map on this 

timescale using conventional methods. Additionally, because the mapping process depends on 

the individual judgment of a mapper, a mapping process may not be completely reproducible. 
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4. Predictive Digital Soil Mapping 

The exponential growth of computer processing, satellite data collection, software capability, 

and sharing of digital information has greatly impacted all earth science disciplines. Increasingly, 

scientists are challenged with becoming literate in coding, statistics, and data science as well as 

their chosen discipline, to be able to understand how to best apply the enormous computer 

power now at our disposal. The digital revolution has also made interdisciplinary and 

transdisciplinary work more possible with the potential for data sharing and integration 

worldwide if the hurdles of infrastructure, access, and standardization can be overcome. The 

challenges and benefits of this progress have been applied in the development of predictive 

digital soil mapping (PDSM).  

PDSM uses numerical or statistical models that combine information about soil-forming factors 

(scorpan) obtained from spatial data layers with point soil data to estimate soil features for a 

map area. This technique can be used to generate maps of discrete features, like soil 

classifications, or continuous features like salinity, pH, and soil organic carbon. The outputs differ 

from conventional mapping, as they are gridded data represented by pixels in raster formats. 

This product is more suited to representing the spatial variability of soil and avoids the 

generalization required in conventional mapping (Hartemin & McBratney, 2008; McBratney et 

al., 2003b). 

 

Figure 3. Representation of a conventional vector map with sharp boundaries between units (left) and a raster map with pixels 
that each have a unique value (right). It is simple to aggregate the raster map into larger units or classifications but much more 
complicated to disaggregate a vector map. After (Soil Science Division Staff (USDA-NRCS), n.d.). 
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The methodology used in PDSM can vary significantly, and academic reviews describe the 

particulars of different techniques with greater depth than will be covered here (Arrouays et al., 

2017a; Florinsky, 2016; T. Hengl et al., 2019; Ma et al., 2019; McBratney et al., 2003a; Nussbaum 

et al., 2018; Scull et al., 2003; Wadoux et al., 2020). Despite differences in methods, the general 

process is the same (as illustrated in Figure 4): 

▪ The objectives and parameters of the mapping are determined (target attributes, 

classifications, map extent, and map scale.) 

▪ Data is collected (real soil observations and environmental covariates). 

▪ A spatial prediction method is applied to the data to generate a model. 

▪ The output of the model (i.e., the soil map) is assessed using validation procedures and 

critical evaluation by experts. 

▪ If the outputs do not meet the necessary standards or do not achieve the goals of the 

project, further iterations of the mapping process will be completed.  

 

Figure 4. Generalized spatial prediction schematic. (T. Hengl et al., 2019) 
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The fundamental basis of the complex mathematical models driving soil predictions is the 

universal model of soil variation (T. Hengl et al., 2019): 

𝑍(𝑠) =   𝑚(𝑠)  +   𝜀′(𝑠) +  𝜀"(𝑠)     (3) 

Each term represents a source of variation. The first term is the structural component or trend, 

determined by the soil formation factors and relationships between them (pedologic model). The 

second term describes the spatial correlation that produces variability; this term is treated as 

stochastic, meaning that it involves probability and is often solved for using regression models. 

The third term is to account for the variation from noise. Natural processes all have a degree of 

randomness that contributes to this term, along with errors from measurement and other 

sources. Understanding these three basic components and the different ways they introduce 

error and uncertainty is important to the conceptualization of what more complex and obscure 

predictive mapping methods are trying to achieve.  

The types of prediction models used can be divided into three general categories: unsupervised 

covariate classification techniques; supervised methods such as taxonomic distance techniques, 

multinomial logistic regression techniques, and geostatistical approaches; and lastly, models 

based on qualitative information and expert knowledge (T. Hengl et al., 2019; Ma et al., 2019). 

The selection of a data-driven or knowledge-based modelling approach largely depends on the 

amount of available data and desired outcomes. Sophisticated data-driven statistical methods 

using recent developments in machine learning like artificial neural networks can produce 

accurate results (Brungard et al., 2015) and provide new insight into soil-landscape relationships 

by identifying relationships that were not recognized or anticipated (Ma et al., 2019). However, 

these "big data" or "black box" techniques must be used with caution due to potential issues with 

overfitting models to sparse soil data or selecting the simplest models instead of the most 

suitable from a pedological standpoint (Arrouays, McBratney, et al., 2020). 
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4.1. Data Sources for Predictive Digital Soil Mapping 

4.1.1. Soil Information 

Observations of soil conditions are necessary for all soil mapping. In PDSM, soil information from 

sample sites is used to train the predictive models – connecting real soil properties to the 

environmental factors. A second set of samples can also be used to check, or validate, the model 

results. The soil observations can come from new field collection or legacy surveys. 

4.1.1.1. New soil data 

In PDSM, the selection of soil sample locations is based on statistical methods, which are 

necessary to produce the most accurate results possible. These approaches include random 

samples, uniform grids, or more complex techniques like conditioned Latin hypercube – which 

can optimize the sample distribution across various units (Brus et al., 2011; Minasny & 

McBratney, 2006; Zhang et al., 2016). The precision and coverage required by these different 

sampling schemes can increase the cost of sampling programs in remote or inaccessible areas 

(Kidd et al., 2015). However, mappers have had success generating predictive maps with 

convenience-based sampling schemes that prioritize accessibility and increase the potential for 

establishing soil monitoring networks (Chartin et al., 2017). 

New technology has significantly changed how soil information can be collected through 

improvements in remote sensing and proximal sensing tools. Portable devices such as 

spectrometers and magnetic susceptibility meters allow for characterization and estimation of 

soil properties in the field, saving time and lab analysis costs (Adamchuk et al., 2017; Horta et al., 

2015; Silva et al., 2021). These advances complement PDSM as they allow for the collection of 

more data points, increasing the data available for modelling. 

4.1.1.2. Legacy soil data 

Legacy soil data refers to past soil survey maps, profiles, and other related soil analyses (Hengl et 

al., 2019). Digitizing this information has been a major focus of many government survey 

organizations to make it accessible as GIS layers in web-based data repositories. The 

georeferencing of this data, especially determining the precise location of point soil data (soil 
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profiles), is critical to the successful use of legacy data in modern PDSM projects (Hartemin & 

McBratney, 2008; MacMillan & Hengl, 2019). Legacy data may also need to be harmonized if 

multiple methods of description and lab analysis have been used. Subjective or qualitative 

observations will have higher levels of uncertainty than quantitative field measurements. A 

mismatch between the age of different data sources (covariates, training vs. validation soil data) 

is another potential source of error, especially when attempting to model dynamic soil properties 

such as biological attributes (Brevik et al., 2016). 

4.1.2. Environmental Covariates 

Covariates, or environmental covariates, are spatial data layers related to the factors of soil 

formation. The mathematical relationship between soil characteristics and covariate data is what 

predictive models are calculating. Relief and other topography-related values are the foundation 

of a covariate dataset and are combined with many other features such as climate, geology, and 

biological factors (Table 1). The significance of certain covariates can depend on the location and 

extent of mapping and the quality of covariate data available. Geology, both bedrock and 

surficial, was the most important covariate in a new national map of Nepal (Lamichhane et al., 

2021), while a review of over 40 studies in Iran determined that quantitative information such as 

terrain attributes and remote sensing data are more commonly used as covariates in that region, 

over qualitative layers such as geology and land use (Zeraatpisheh et al., 2020). 

Table 1. Examples of Environmental Covariates (after Hengl et al., 2019) 

Formation-factor Covariates  

Soil Soil classification map, soil attributes map 

Climate Temperature, precipitation, snow cover, potential 
evapotranspiration 

Organisms Vegetation indices, land cover maps 

Relief (topography) DEM, slope, curvatures, flow models, landform classes, hydrological 
accumulation/deposition indices 

Parent material Bedrock and surficial geology maps, classifications and properties, 
volcanic activity 
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Formation-factor Covariates  

Age Geological ages, ages of recent disturbances 

Spatial position and context Position, distance to landscape features (e.g. ocean, river, hills) 

Human influences Land use maps, probability/intensity of different land uses, soil 
disturbance or sealing, fertilization maps, infrastructure 

Covariates must be selected and prepared carefully, depending on the map scale, extent, 

resolution, and purpose of mapping. The covariates used in a model can be selected using expert 

knowledge, especially in areas where the contributing factors to soil development are well 

understood. Pedological knowledge can also be useful in assessing whether the preparation of 

covariate layers is appropriate (e.g., extent of smoothing for a DEM) (Soil Science Division Staff 

(USDA-NRCS), 2017). Data-driven approaches can also be used to narrow down a covariate set 

from all available inputs and can lead to discoveries of new pedological relationships (Ma et al., 

2019; Nussbaum et al., 2018).  

4.2. Accuracy and Validation 

"…defining and applying a common accuracy assessment framework is probably the greatest 

challenge of Digital Soil Mapping on its way toward practical applications." (Lagacherie, 2008) 

Mapping accuracy refers to the difference between a predicted value and a "true" value. 

Accuracy assessments can be subjective, based on what is reasonable considering expert 

knowledge or calculated and assessed using objective approaches (Hengl et al., 2019).  

Common pitfalls of PDSM that can impact map accuracy were identified by (McBratney et al., 

2003b) and continue to be relevant in contemporary projects: 

▪ Lack of sufficient soil observations that are appropriate for statistical modelling methods. 

▪ Poor data quality, and inadequate or inappropriate data preparation. 

▪ Overfitting models to data, either due to lack of data points or modelling methods. This 

is increasingly important to consider as data-driven methodologies using machine 

learning are the cutting edge of the research, but the field collection of soil samples 
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necessary to support these techniques has not been prioritized (MacMillan & Hengl, 

2019). 

▪ Circularity, as in covariates being derived from one DEM then used to derive more 

covariates and then all be combined in predicting the target soil variables. 

▪ Discrepancies between databases and data mining techniques adopted by different 

organizations. 

Validation of model results is key to evaluating and communicating map accuracy. The highest 

standard of validation is to have an independent set of soil observations collected using a 

statistical sampling method to compare to predicted values (Brus et al., 2011; Carré et al., 2007). 

However, funding restrictions mean that there is generally not a budget for this external 

sampling. A review of PDSM mapping of soil organic carbon assessing studies from 2013-2019 

found that though all studies used objective validation techniques, only 9% performed external 

validation (Lamichhane et al., 2019). When new or external data is not available, validation is 

performed through data-splitting and cross-validation techniques where the original sample set 

used to generate the model is divided into calibration and validation sets, and then the analysis 

is repeated (T. Hengl et al., 2019). Cross-validation is cost-effective but may not be entirely 

suitable, especially in situations where the data was not collected using an unbiased sampling 

design (Lamichhane et al., 2019). 

The recent proliferation of PDSM has led to the greater codification of analysis and validation 

methods through collaborative initiatives like the GlobalSoilMap (Arrouays, Poggio, et al., 2020) 

and  widespread application of predictive techniques in different regions (Arrouays et al., 2017b; 

J L Boettinger et al., 2010; Chaney et al., 2016; Searle et al., 2021; van Zijl, 2019). However, 

contemporary critiques are still calling for the development of accuracy standards for PDSM 

products, a need that is more urgent as the software and data necessary to conduct this work 

has become more available to non-academic users. Without enforced minimum standards, there 

is a greater risk of the generation of poor quality map products in an applied setting like the 

private sector (Arrouays, McBratney, et al., 2020).  
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4.3. Uncertainty 

"End users and decision makers frequently feel uneasy with uncertainty… most of them are unsure 

of how to use and communicate [it]" (Arrouays, McBratney, et al., 2020) 

Uncertainty is a critical feature of all maps, conventional and digital. No map perfectly captures 

nature. They are a representation of our best estimate given the resources and understanding at 

a given moment in time. Sources of error such as sampling bias, location accuracy, measurement 

accuracy and error, and numerous other human errors are all sources of uncertainty in addition 

to random natural variation. The quantification and graphical representation of uncertainty is a 

core advantage of PDSM over conventional mapping, and the potential of this feature of 

predictive maps draws attention from end-users of soil data. Prediction uncertainty can be used 

to design optimized future sampling plans (Zhang et al., 2016), and reporting uncertainty is 

important to guiding land management decisions and completing risk assessments. However, 

understanding how best to interpret and apply quantitative uncertainty information to these 

situations is not entirely clear. When surveyed, soil map end-users expressed a strong interest in 

having uncertainty indicators reported but also suggested that they would need significant 

technical support to apply these findings (Richer-de-Forges et al., 2019).  

Determination and representation of uncertainty in PDSM can be achieved with several methods, 

often depending on the modeling technique used. Validation through the collection and 

statistical analysis of a new set of soil samples is one way of determining the uncertainty of a soil 

map (Brus et al., 2011), but it is expensive and not always performed. Uncertainty reporting 

through direct geostatistical modelling of soil properties is more common but relies on the quality 

of the assumptions used in making the model (T. Hengl et al., 2019). Prediction intervals (PI) are 

a common technique. A 90% PI reports the upper and lower values within which the true value 

is expected to occur 9 times out of 10 (GlobalSoilMap Science Committee, 2015). If a PI is narrow 

(e.g. range of 5-6 units) the uncertainty is lower than if the PI is wide (e.g. range of 1-10 units). In 

addition to PI, maps of probability distributions or density functions, equiprobable simulations, 

and prediction error maps can be used (Hengl et al., 2019). The complexity of these 

determinations of uncertainty depends on the type of soil data being investigated (e.g., 
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continuous values, categorical data, narrative data). (Heuvelink & Brown, 2006) proposed a 

framework for handling uncertainty in soil information databases that accounts for multiple types 

of data.  

Understanding uncertainty in soil mapping is not trivial. Even the best possible predictive maps 

made by experts using the best available data may not be able to explain a significant amount of 

the variation. This is especially true for smaller survey areas where strong regional trends in 

topography, geology, and climate are not present to explain the soil variability. In such cases, 

explaining only 50% of the variation of the target variable modeled may be considered a good 

result (Cook et al., 2008; Kempen et al., 2011) 

5. Application of Predictive Digital Soil Mapping  

Predictive mapping has been applied at all scales, from global and continental maps to field-scale 

evaluations in support of precision agriculture (J L Boettinger et al., 2010). The key examples 

selected focus on how predictive mapping techniques have been integrated with established soil 

surveys or agencies operating on a regional or national scale.  

5.1. Predictive Soil Mapping in Australia 

In the 1990s, the recognition of soil degradation in agricultural areas of Western Australia 

renewed soil survey efforts to improve soil information coverage at smaller map scales 

(1:250,000 or finer). Most of this mapping was undertaken using conventional methods (Cook et 

al., 2008). However, during this reinvigoration of soil survey in the country, predictive digital 

mapping projects were initiated, and the country has since become a leader in the 

operationalization of predictive mapping and the development of these techniques (Kidd et al., 

2020; Lamichhane et al., 2019; Searle et al., 2021). Key figures in the development of modern 

PDSM, such as Dr. Alexander McBratney, are also based in Australia. 

The re-mapping of the Murray-Darling Basin from 1995-1998 using spatial modelling techniques 

to fill in gaps in the conventional survey is one of the earliest examples of applied PDSM and has 

become a seminal study in the field (Bui & Moran, 2003). This project used the expert knowledge 

from existing soil maps to generate classification rules for the rest of the basin. During modeling, 
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training data pixels were matched with unmapped areas based on the similarities in 

environmental conditions with the assumption that the same factors would be controlling soil 

properties in each location. Despite the presence of complicated soil-landscape relationships, the 

replication of mental models from historic maps was generally successful. Accuracy assessments 

of the final predictions had more mixed results (Figure 5), and were restricted by the lack of new 

sampling, but the overall project was considered a success. 

 

Figure 5. Comparison of the Digital Atlas of Australian soils (former conventional map) and the new Murray-Darling Basin Soil 
Information System (MDBSIS) (Bui & Moran, 2003). 

Though there was some integration with surveys, PDSM in Australia was still largely academic 

until approximately ten years ago (Kidd et al., 2020). Since then, more widespread application of 

PDSM has occurred. The Soil and Landscape Grid of Australia (SLGA) (Grundy et al., 2015) is a 
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publicly funded nationwide map of soil attributes at a 90-m resolution. The data used to generate 

the map are historic soil data, with new measurements using spectroscopic sensors and 

environmental covariates. The map includes estimates for six standard depths with a 90% 

prediction interval and complies with the GlobalSoilMap standards (Kidd et al., 2020). Through 

the online data portal, national and regional maps of soil and landscape attributes are freely 

available for download.  

5.2. Predictive Soil Mapping in the United States 

Soil surveys in the United States began in the 1890s, and the "modern" soil survey started in the 

1950s when the United States Department of Agriculture Natural Resources Conservation Service 

(USDA-NRCS, originally called the Soil Conservation Service) was established, and maps were 

consistently produced using air photos as a base. These surveys covered 85% of the United States 

by the 1990s (Indorante et al., 1996). However, at that time, advancements in understanding of 

soil and environmental systems, land use changes, and technological improvements caused the 

traditional soil survey reports to be considered outdated. Increasingly, the modernization of soil 

survey included calls for accessible systems with common standards that can readily incorporate 

new data (Brevik et al., 2016; Grunwald, 2006a; Indorante et al., 1996). PDSM has been accepted 

as the solution to these issues. 

Early work in the United States consisted of local or regional PDSM projects and test sites. The 

USDA-NRCS experimented with developing digital soil-landscape modelling in California to serve 

as an aid for conventional soil mappers to more efficiently plan their field work (Howell et al., 

2008). Topography and satellite imagery (ASTER) were the primary covariates used, and several 

soil parameters were modelled. Not all modelling was successful, but the modelled depth to 

secondary carbonates and estimates for particle size classes were sufficiently accurate for over 

70% of the test points (Howell et al., 2008). Embedding some PDSM evaluation within an 

operating conventional survey is mutually beneficial; field mappers gain useful insight and then 

are also able to independently validate the predictions through their subsequent data collection 

and mapping. 
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In the years since the California study, the advancement of PDSM and the establishment of more 

consistent standards have led to the greater acceptance of digital mapping as a stand-alone 

product. A number of ambitious PDSM projects have been completed or are currently in 

development. 

▪ POLARIS is a map of soil series probabilities at a 30-m spacing that has complete coverage 

of the contiguous United States (Chaney et al., 2016). The map was produced using a 

machine learning algorithm (DSMART-HPC) to combine high-resolution environmental 

covariates with conventional soil map data from the Soil Survey Geographic (SSURGO) 

database. The intent of this mapping was to fill in gaps in the SSURGO coverage, remove 

the existing discontinuities at political boundaries, and disaggregate large polygons. The 

results were validated using the NRCS National Soil Information System (NASIS), a 

database of soil observations. Most of these observations were used to produce the 

SSURGO map units, so it is not an independent dataset, but no other appropriate set of 

observations exist. The uncertainty of the predicted classification is fairly high for large 

areas of the map (see Fig. 5 in Chaney et al., 2016), which has been attributed to having 

insufficient covariates. The initial accuracy assessment showed that the accuracy was 

highly variable throughout the map. The POLARIS map has since been refined to improve 

the accuracy of soil series predictions and also generate soil property maps (Chaney et al., 

2019). This new map is able to explain 41% of the variation of soil properties, on average, 

with pH, organic matter, and fractions of sand, silt, and clay being the most accurately 

predicted.  

▪ (Ramcharan et al., 2018) used a different approach to mapping soil classifications and 

properties of the conterminous United States at a 100-m resolution. Instead of 

disaggregating polygons like POLARIS, point data from three national datasets was used, 

along with an extensive set of environmental covariates. Cross-validation of soil property 

results indicated similar to slightly better results than POLARIS. Cross-validation 

estimated that prediction accuracy was 60% for soil great groups (GG) and 66% for 

modified particle size classes (mPSCs). Independent validation was also completed and 

found that accuracy was between 24-58% for GG and 24-93% of mPSCs. 
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▪ The USDA-NRCS has recently announced that they will be completing a new inventory of 

soils for the entire United States, using PDSM technology to be completed by 2026 

(Thompson et al., 2020). Soils2026 will generate 30-m resolution products predicting 12 

key soil properties at six depth intervals, following the standards set by the GlobalSoilMap 

project. 

5.3. Predictive Ecosystem Mapping in British Columbia, Canada 

Predictive techniques have also been operationalized in fields outside of soil mapping. Predictive 

ecosystem mapping (PEM) uses the same principles of PDSM, with environmental covariates 

being linked to ecosystem rather than soil classifications. The predictive ecosystem mapping 

project in British Columbia, Canada, is one of the earliest examples of predictive modeling 

standards being established for a government-backed mapping initiative (Resources Inventory 

Committee (Canada). Terrestrial Ecosystem Mapping Alternatives Task Force., 1999). By early 

2005, 53% of the province had been mapped with predictive ecosystem mapping, compared to 

only 15% with conventional methods. The results of this mapping are available in a public 

database. Applications of this ecosystem data include site productivity assessment, wildlife 

habitat and biodiversity interpretations, rare and special ecosystem inventories, riparian 

management area interpretations, archaeological overview assessments, and support 

responsible forest management (Cortex Consultants Inc. and JMJ Holdings Inc., 2005; Forest 

Service of British Columbia, n.d.). An 8.2 million ha 1:20,000 scale map in the former Caribou 

Forest Region was completed as part of this initiative. This study generated a predictive map 

using only existing knowledge and data. Independently classified field data was then collected to 

for validation of the model results. The final PEM maps were found to have an average accuracy 

of 69% across the study area, which was deemed an acceptable result (MacMillan et al., 2010). 

In addition to this technical success, it was reported that end-users of the data enthusiastically 

accepted the results once the utility of predictive mapping methods was communicated. 
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6. Future Opportunities and Barriers to Adoption 

PDSM has made major strides since its inception, with exponential increases in map extent and 

resolution and significant improvements in accuracy (Minasny & McBratney, 2016). The potential 

for the dynamic re-mapping of areas as new data is collected makes PDSM applicable to adaptive 

management techniques that are becoming more widespread (Allen et al., 2011; Cook et al., 

2008). However, certain soil features are not yet being modelled by PDSM or are difficult to map 

accurately (Richer-de-Forges et al., 2019). Highly dynamic soil properties related to hydrology like 

permeability and infiltration capacity are in high demand by end-users but are not being 

produced in PDSM (Figure 6). Additionally, current PDSM techniques are not modelling system 

dynamics or able to predict changes in soil properties (Ma et al., 2019). This is an area of potential 

expansion that has also been identified as desirable by end-users in research, agriculture, and 

other natural resource industries (Richer-de-Forges et al., 2019).  

 

Figure 6. Correlation between soil attributes prioritized by end-users (x-axis) and attributes being produced by soil mappers (y-
axis) (Richer-de-Forges et al., 2019) 
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There are numerous challenges facing the progression of PDSM into applied use; some of the 

most critical are outlined here. 

Access to data and need for new data collection: 

PDSM requires large amounts of high-quality soil data for models to be as accurate as possible 

and to complete independent model validations. When legacy soil data is used with new 

covariate data layers, predictions may not be accurate, and the uncertainty is compounded with 

original errors of data collection (Hartemin & McBratney, 2008). Large-scale mapping programs 

can benefit from new in-situ measurement technologies to collect soil data more rapidly and 

cheaply. For local or regional maps, new data could be obtained from private industry as 

companies are commonly required to collect baseline soil data and routine monitoring for 

environmental impact assessments, but it is difficult to convince stakeholders to make this data 

available (Drozdowski et al., 2019).  

The use of new data is also essential for developing and progressing soil knowledge and our 

understanding of soil systems. There is a close relationship between soil mapping, classifications, 

and pedologic models. Advances in one area will necessarily change the others (Brevik et al., 

2016). 

Map quality standards: 

Challenges in creating and adopting unified international standards of soil classification and 

analysis persist, and the World Reference Base (WRB) for soil classification only started being 

accepted as the default system, over previous national systems, towards the end of the 20th 

century (Mermut & Eswaran, 2001). PDSM faces similar challenges. Having a robust and 

consistent framework of minimum quality standards for PDSM outputs is essential. Users should 

be able to easily check and understand the validity and credibility of the data, then move on to 

the important work of figuring out what to do with it.  

Though many thorough descriptions of PDSM methodology and workflow are available, there is 

yet to be an accepted and enforced minimum standard of practice. This is not a simple 

undertaking due to the many permutations of data sources, modelling method, map scale and 
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purpose, and beyond. Standards have been developed for significant large-scale PDSM 

endeavours (WorldSoilMap) that are now being applied to more regional projects. This is a good 

starting point. 

Using unfamiliar types of mapping products: 

The representation of the variability of soil across landscapes using raster formats, rather than 

units with clearly delineated boundaries as in conventional mapping, produces a mismatch 

between how many soil map end-users are used to conceptualizing soil data. Complicated, 

gradational information is not intuitive and may not be what land managers or administrators 

need. Maps of both basic soil properties, as well as higher-level interpretations such as 

agricultural suitability, should be generated by map makers instead of leaving all the 

interpretation to users that may be less familiar with pedology or the limitations of a specific data 

set. (Arrouays, McBratney, et al., 2020) 

Similarly, quantifications of uncertainty are lauded as a great advantage of digital over 

conventional mapping. However, communicating what these values mean in a practical way to 

more general audiences is not adequately covered by the current discourse. Quantified 

uncertainty or probability can also have legal implications for decisions made using this data – 

this is not yet well understood (Tomislav Hengl & MacMillan, 2019). 

7. Recommendations  

Based on the discussion above, some key recommendations can be made: 

▪ The collection of new soil data for both primary mapping and map validation is critical to 

producing the best and most accurate products. Recent data is especially important for 

understanding dynamic soil properties that are currently difficult to model. 

 

▪ Further development and enforcement of minimum quality standards is necessary as 

PDSM becomes more applied. WorldSoilMap is a good starting point for large mapping 

projects, but standards for more local or regional projects are less clear. 
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▪ Clear and accessible communication of both the potential and limitations of PDSM 

programs should be prioritized. This includes audiences within the soil science community 

– improving training and knowledge-building in new methods – as well as end users of 

soil data and stakeholders such as government bodies and private industry. Feedback 

from end-users about the ease of use and applicability of PDSM outputs should direct 

future work. 

8. Conclusion 

Technological advancement (GIS, remote sensing, computer processing) has enabled soil 

mapping to become more quantitative. There is a demand for high-resolution quantitative soil 

data in many disciplines from end-users in academia, private industry, and government. 

Predictive digital soil mapping can provide gridded maps with continuous values for soil 

properties and predict discrete soil classifications, with quantitative estimates of uncertainty for 

the results.  

Techniques of predictive digital soil mapping are sufficiently developed to be applied outside of 

research contexts, and these methods have been increasingly adopted over the last decade. Most 

contemporary soil mapping projects are already using predictive mapping techniques in some 

capacity. However, mapping projects are often limited by the amount and quality of the soil data 

available. Therefore, instead of asking if we should attempt predictive mapping, the more 

significant question is, are we willing to invest in what is necessary to produce the highest quality 

and most accurate maps using these techniques? This could mean new sampling campaigns in 

support of updating outdated or sparse soil surveys or accessing recent soil information collected 

by natural resource or agriculture projects.  
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